
Interactive Skeleton-Driven Dynamic Deformations

Steve Capell Seth Green Brian Curless Tom Duchamp Zoran Popović

University of Washington

Abstract

This paper presents a framework for the skeleton-driven animation
of elastically deformable characters. A character is embedded in
a coarse volumetric control lattice, which provides the structure
needed to apply the finite element method. To incorporate skele-
tal controls, we introduce line constraints along the bones of sim-
ple skeletons. The bones are made to coincide with edges of the
control lattice, which enables us to apply the constraints efficiently
using algebraic methods. To accelerate computation, we associate
regions of the volumetric mesh with particular bones and perform
locally linearized simulations, which are blended at each time step.
We define a hierarchical basis on the control lattice, so for detailed
interactions the simulation can adapt the level of detail. We demon-
strate the ability to animate complex models using simple skeletons
and coarse volumetric meshes in a manner that simulates secondary
motions at interactive rates.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically Based Modeling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: animation, deformation, physically-based animation,
physically-based modeling

1 Introduction

Physical simulation is central to the process of creating realis-
tic character animations. In the film industry, animators require
detailed control of the motion of their characters, but creating
physically-based secondary motions is difficult and time consum-
ing to do by hand. Recently, techniques have been developed for
automatically simulating these secondary motions. These methods
are built atop skin, muscle, and bone models and can generate de-
tailed, dynamic motions. However, constructing these models is
time consuming, and the simulations are computationally expen-
sive.

By contrast, in video game or virtual reality applications where
interactivity is critical, character animation is built atop much sim-
pler models. The shapes are composed of convenient primitives
and are controlled by line segment based skeletons. Deformations
of body parts are purely kinematically driven, using, e.g., blended
coordinate frames. Incorporating realistic physically-based dynam-
ics using the film industry’s approach is currently impractical.

In this paper, we attempt to bring dynamic simulation into the
realm of real-time, skeleton-driven animation. The challenge is to
find the right combination of physical principles, geometric mod-
eling, computational tools, and simplifying assumptions that yield
compelling animations at interactive rates.

Our approach is based on the equations of motion of elastic
solids, simulated in a finite element setting. The volumetric finite
element mesh need only be specified coarsely, subject to the re-
quirement that it encompass the geometric model on which simula-
tion will be performed. This last requirement is necessary in order
to ensure complete integration over the interior of the object. In
fact, as long as the interior of the object is well-defined, simulation
of its elastic deformation is possible regardless of the the surface
representation or complexity.

The volumetric mesh we choose is not restricted to a regular grid;
rather, it is comprised of elements such as tetrahedra and hexahe-
dra. This flexibility permits construction of meshes that conform
better to the surface of the object, improving simulation quality. In
addition, to support adaptive level of detail during simulation, we
construct a hierarchical basis, which allows detail to be introduced
or removed as needed.

Since our ultimate goal is simulation of skeletally controlled
characters, our framework supports line constraints, where lines
correspond to bones. In order to incorporate these constraints eas-
ily, we require the volumetric mesh to contain edges coincident with
the bones. Finally, to achieve interactive rates, we linearize the
equations of motion, solve them over volumetric regions associated
with each bone, and blend the deformations where regions overlap.

We believe that this work makes a number of contributions. Our
crafting of the function space in order to make constraint han-
dling easier is, to our knowledge, novel. We introduce blended
local linearization of nonlinear equations, in the context of de-
formable animated characters. We generalize a method of solving
constraints using linear subspace projection. We also introduce a
constraint that allows one-dimensional bones to behave as three-
dimensional bones. Finally, we believe our most important contri-
bution is putting together a collection of techniques that allows us to
interactively animate arbitrary shapes with skeletal controls while
generating realistic dynamic deformations.

2 Related Work

Probably the most common technique for deforming articulated
characters is to define the position of the surface geometry as a
function of an underlying skeletal structure or set of control pa-
rameters. Recent advances in this area can be found in the work
of Lewis et al. [2000], Singh and Kokkevis [2000], and Sloan et al.
[2001]. Our work builds on the notion of skeletal control, but within
a physically-based framework.

In the late 1980’s, Terzopoulos et al. pioneered the field of
physically-based deformable models for computer graphics. Using
Lagrangian equations of motion and finite differences they simu-
lated elastic [1987] and inelastic [1988] behaviors, combined with
a rigid body motion term to compensate for instabilities with stiff
bodies [1988].

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

586

Much of the research that followed sought to add more sophisti-
cated constraint solvers, accelerate the solutions under a variety of
approximations, and add stability to permit larger timesteps. Platt
and Barr [1988] improved on existing constraint methods (e.g., the
penalty method) by introducing reaction constraint and augmented
Lagrangian constraint approaches. Applying these constraints to
already complex simulations, however, was not a step toward inter-
activity.

Pentland and Williams [1989] simplified the problem by solv-
ing for the vibrational modes of a body and keeping only the lower
frequency modes and obtained realtime simulations of physically
plausible deforming bodies. Witkin and Welch [1990] used La-
grangian dynamics to solve for low-order polynomial, global de-
formations, coupled with constraints enforced through Lagrange
multipliers. Baraff and Witkin [1992] later extended this method
for better handling of non-penetration constraints. Finally, Metaxas
and Terzopoulos [1992] combined Witkin and Welch’s global de-
formation framework with local finite element surface deformations
and Lagrange multiplier constraints to animate superquadric sur-
faces. In each of these examples, while achieving interactive rates,
the deformations were substantial approximations to detailed volu-
metric deformations and were not demonstrated on complex shapes.

To accelerate computations, some hierarchical methods have
also been employed. Terzopoulos et al. [1988] use a multigrid
solver for a surface-based inelastic simulation. The approach of
Metaxas and Terzopoulos [1992] is analogous to a two level simu-
lation that uses global deformations at the coarse level and finite ele-
ments for finer surface deformations. More recently, Debunne et al.
[1999] built an octtree of particles that interact according to Lamé’s
equation, resulting in interactive simulations. The particles are sim-
ulated using an explicit Euler solver that steps each particle adap-
tively in time and at differing spatial resolutions. To animate a sur-
face, the particles are linked to each surface point by a weighting
scheme. Their approach was recently extended to use unstructured
tetrahedral hierarchies [Debunne et al. 2001].

To add stability to computations, implicit solvers have proven
to be quite effective. Terzopoulos et al. [1987; 1988] used semi-
implicit solvers in their initial work. Baraff and Witkin [1998] used
an implicit scheme to permit large timesteps in notoriously unstable
cloth simulations. Desbrun et al. [1999], also working with cloth
models, showed that the implicit solution method acts as a filter that
stabilizes stiff systems. They also add a rotation term to preserve
angular momentum and a correction term after each time step to
simulate nonlinear elasticity.

Free-form deformation (FFD), introduced by Sederberg and
Parry [1986], is also closely related to our work. FFD involves
embedding an object in a domain that is more easily parameterized
than the object itself. The main advantages of FFD are that arbitrary
objects can be easily deformed and the space of deformations can
be crafted independently of the representation and resolution of the
object. Since its introduction, the flexibility of FFD has been im-
proved by introducing lattices of arbitrary topology [MacCracken
and Joy 1996], and dynamic free-form deformation has been in-
troduced to apply FFD to animation [Faloutsos et al. 1997]. Our
framework builds on FFD by also embedding the object in a coarse
control lattice. But unlike the work of Faloutsos et al., where a diag-
onal stiffness matrix was used, we use the principles of continuum
elasticity to compute the dynamics of the object being deformed.

Another approach to fast, physically-based deformations is to
solve quasi-static solutions, i.e., compute the equilibrium state of
the system given forces and constraints, and then animate by ad-
justing the forces and constraints over time. Gourret et al. [1989]
explored such a technique for volumetric finite elements, and James
and Pai [1999] developed an interactive boundary element solution
under the assumption of constant material properties inside the vol-
ume. Other quasi-static approaches have also been favored for sur-

Ω

S

K = K0

(a) (b)

Figure 1: (a) An object Ω ⊂ R
3 instrumented with a skeletal complex S and a control

lattice K = K0. Functions on Ω are defined in terms of K, which forms a neighborhood
of the object. A trilinear basis function is associated with each vertex of K (includ-
ing the red vertices on the skeleton). (b) The control lattice subdivided once to form
K1 (which includes the black, red, and green vertices and edges). Additional basis
functions are associated with newly introduced vertices (shown in green).

gical planning and simulation [Bro-Nielsen and Cotin 1996; Koch
et al. 1996; Roth et al. 1998]. Quasi-static solutions, however, are
approximations that do not capture the true dynamics of motion.

In some cases, interactivity has been achieved without resort-
ing to significant simplifications in the dynamic model. Recently,
Picinbono et al. [2000] described an interactive surgery simulation
using a nonlinear finite element method. They were able to achieve
interactive rates for a virtual liver composed of about 2000 tetrahe-
dra. However, more complex objects such as the ones used in our
work would require many more tetrahedra.

There are also a number of papers that approach the problem of
deforming humans and animals using anatomical modeling [Aubel
and Thalmann 2000; Wilhelms and Gelder 1997]. They differ from
our approach in that we are more concerned with interactivity and
the appearance of realism than actual anatomical modeling.

Another possibility for deformation is to perform thin-shell com-
putations. Recent work by Cirak and Ortiz [2001] demonstrates the
use of subdivision elements for computing the dynamics of thin
shells. However, thin shells are insufficient for modeling the inte-
rior of solid objects.

In the next section we introduce the basic mathematical and
physical formulation that underlies our framework. We then de-
scribe our simulation and control methodology (Section 4), discuss
results (Section 5), and conclude (Section 6).

3 Formulation

Each object that we wish to animate is represented as a domain
Ω ⊂ R

3. We make no assumptions about Ω other than we know its
interior. We instrument each object with a skeleton, i.e. an anno-
tated transformation hierarchy suitable for animation. We refer to
each transformation in the hierarchy, as well as its associated origin
point, as a joint. The skeleton defines a graph S, whose vertices
correspond to joints and whose edges correspond to line segments
between two joints that share a parent-child relationship. Joints and
bones are located interior to the object, so the graph S is a piecewise
linear subset S ⊂ Ω, that we call a skeletal complex (see Figure 1).

Motion of the object is represented by a time dependent function

p : Ω× R → R
3 : (x, t) 7→ p(x, t) . (1)

Let

pS : S × R → R
3 (2)

denote the restriction of the map to S. Rigidity of the bones implies
that pS is an isometry on each edge of S. In particular, pS is a
piecewise linear function on S.

Our goal is to solve for the dynamic motion of the object given
the motion of the skeleton. Since we model the object as an elastic

587

body, the function p(x, t) is then the solution of a system of partial
differential equations, subject to the constraint p(x, t) = pS(x, t) for
x ∈ S.

To solve the system numerically, we apply the finite element
method (see, e.g., [Prenter 1975]). We separate the map p(x, t) into
a constant rest state r(x) and a dynamic displacement d(x, t), each
of which is represented as a finite sum. The rest state of the object
is given by the identity map r : Ω → R

3, which has the expansion:

r(x) =
∑

a

ra φa(x) = ra φa(x) = x (3)

where the functions φa(x) are elements of a finite basis B, and
ra ∈ R

3. As demonstrated in the above equation, we use the
Einstein summation convention throughout this paper: whenever a
term contains the same index as both a subscript and a superscript,
the term implies a summation over the range of that index. The
displacement is expanded similarly:

d(x, t) = qa(t) φa(x) . (4)

where qa(t) ∈ R
3 are the dynamically evolving coefficients that

determine the deformation of the object over time. The state of the
system is simply the sum of the rest state and the displacement:

p(x, t) = (ra + qa(t))φa(x) (5)

We represent the state of the body at time t as a column vector
of generalized coordinates q = q(t) whose a-th component is the
coefficient qa(t) in Equation (4), and we model the dynamics of the
body as a system of second order ordinary differential equations.
The system is obtained by applying the finite element method to
the Lagrangian formulation of the equations of elasticity (see, e.g.,
[Shabana 1998]). In the remainder of the section we describe the
basis B and formulate the finite element problem.

3.1 The Hierarchical Basis

In order to allow our simulations to adapt to local conditions, we
employ a hierarchical basis. Such bases are well established as use-
ful tools for numerical computation (see, e.g., [Bank 1996]). Our
construction mirrors that of what are referred to as lazy wavelets
in [Stollnitz et al. 1996]. The basis B is defined in terms of re-
peated subdivision of a control lattice surrounding the object (see
Figure 1). It is desirable that the control lattice conform to the shape
of the object while being as coarse as possible. An advantage of us-
ing an unstructured lattice instead of a regular grid to define the de-
formation function space is that the lattice can be tailored to fit the
object. More precisely a control lattice K is a finite union K = ∪iCi

of convex cells Ci satisfying the following conditions:

(i) For all i, j, i 6= j the intersection Ci,j = Ci ∪ Cj is either empty
or a face, edge, or vertex of both Ci and Cj.

(ii) The edges of S are edges of cells of K.
(iii) The domain Ω is contained in the interior of K.
(iv) For all i, each vertex of Ci has valence 3 (within Ci).

Condition (iv) still allows a variety of cell shapes including hexa-
hedra, tetrahedra and triangular prisms.

We now show how to construct a collection of functions B =
{φa} on K whose restriction to Ω is a linearly independent set of
continuous functions on Ω. Let V0 ⊂ V1 ⊂ V2 ⊂ . . . be the nested
sequence of function spaces described in appendix A.1. The set
VJ consists of the piecewise trilinear functions on the complex KJ

obtained from K by J hexahedral subdivisions. For each vertex a
of K, positioned at xa, let φa denote the unique function in V0 such
that φa(xa) = 1 and φa(xb) = 0 for b 6= a a vertex of K. Include φa

in B if the restriction of φa to Ω is non-zero. Proceed inductively as
follows. Let a be a vertex of KJ+1 that is not a vertex of KJ and let φa

be the unique function in VJ+1 such that φa(a) = 1 and that vanishes
at all other vertices of KJ+1. Include φa in B if its restriction to Ω is
non-zero and if its restriction to S is zero.

Although the elements of B are defined on all of K, we are only
interested in their values on Ω; we will, therefore, interpret B as
collection of functions on Ω. One can show that the set B is linearly
independent set of functions, which we call the hierarchical basis.

By construction φa ∈ B for each joint vertex a ∈ S, and the re-
striction of φa to S is linear on each bone of S. Moreover if φa ∈ B,
for a not a joint vertex, then φa vanishes identically on S. Conse-
quently, the function pS(x, t) can be written in the form

pS(x, t) =
∑

a∈S

(ra + qa(t))φa(x) . (6)

and because φa(a) = 1, the vector (ra + qa(t)) is the location of the
joint vertex a at time t.

3.2 Equations of Motion

By virtue of Equation (5), we can express the kinetic energy T and
elastic potential energy V as functions of q̇ and q, respectively,
where q̇ denotes the time derivative of q. The equations of motion
are then the Euler-Lagrange equations

d
dt

(

∂T(q̇)
∂q̇

)

+
∂V(q)

∂q
+ Qext − µq̇ = 0 (7)

where ∂T/∂q̇ and ∂V/∂q denote gradients with respect to q̇ and
q, respectively. The term Qext is a generalized force arising from
external body forces, such as gravity. The last term is a generalized
dissipative force, added to simulate the effect of friction. We will
now derive each of the first three terms of Equation 7, ultimately
yielding a system of ODEs to be solved in generalized coordinates.

The kinetic energy of a moving body is a generalization of the
familiar 1

2 mv2:

T =
1
2

∫

Ω

ρ(x) ṗ · ṗ dΩ =
1
2

Mab q̇a · q̇b (8)

where ρ(x) is the mass density of the body, and Mab =
∫

Ω

ρ φaφb dΩ. Equation (8) yields the formula

d
dt

(

∂T
∂q̇

)

= M q̈ . (9)

The matrix M composed of the elements Mab is called the mass
matrix. We discuss its computation in Section 3.3.

The elastic potential energy of a body captures the amount of
work required to deform the body from the rest state into the current
configuration. It is expressed in terms of the strain tensor and stress
tensor. Strain is the degree of metric distortion of the body. A
standard measure of strain is Green’s strain tensor:

eij =
∂di

∂xj
+

∂dj

∂xi
+ δkl

∂dk

∂xi

∂dl

∂xj
(10)

The diagonal terms of the strain tensor represent normal deforma-
tions while those off the diagonal capture shearing. Forces acting
on the interior of a continuum appear in the form of the stress ten-
sor, which is defined in terms of strain:

τij = 2G

{

ν

1− 2ν
tr(e)δij + eij

}

(11)

588

where tr(e) = δijeij. The constant G, called the shear modulus or
modulus of rigidity, determines how hard the body resists deforma-
tion. The coefficient ν, called Poisson’s ratio, determines the extent
to which strains in one direction are related to those perpendicular
to it. This gives a measure of the degree to which the body preserves
volume. The elastic potential energy V(q), which is analogous to
the familiar definition of work as force times distance, is given by
the formula

V = G
∫

Ω

{

ν

1− 2ν
tr2(e) + δijδkleikejl

}

dΩ (12)

By combining Equations 4, 10, and 12 we can express the elastic
potential V and its derivatives (with respect to q) as polynomial
functions of q. The coefficients of these polynomials are integrals
that can be precomputed. Details are described in appendix A.2.

The matrix S = ∂2V
∂q∂q is referred to as the stiffness matrix.

To add realism, we include the force of gravity in our formula-
tion. Gravity is an example of a body force that affects all points
inside the body. We treat gravity as a constant acceleration field
specified by the vector g. The gravitational potential energy is then
the integral

Vg =
∫

Ω

ρ g · p =
∫

Ω

ρφag · qa . (13)

The generalized gravitational force is the gradient

Qg
a =

∂Vg

∂qa
=

(
∫

Ω

ρφa

)

g (14)

The above force can be interpreted as the familiar mg except that
the mass term represents all of the mass associated with a particular
basis function.

3.3 Numerical Integration

In order to compute the gravity terms and the mass and stiffness
matrices we precompute the integrals in equations (8), (14), and
(29). The integration is done numerically using the following steps:

1. Subdivide K to the desired level for numerical integration.

2. Compute the values of the basis functions at each vertex.

3. Tetrahedralize the domain. After subdividing once, the do-
main is composed of only hexahedral cells. We then divide
each of these cells into tetrahedra in order to approximate
functions on the domain as piecewise linear.

4. Compute the integrals over each domain tetrahedron using
piecewise linear approximations to the basis functions. If all
four vertices of a tetrahedron fall outside the surface of the
object, its contribution to the integrals is neglected.

With the integrals computed, equation (7) can now be solved using
a nonlinear Newton-Raphson solver.

4 Skeletal Simulation

The fully nonlinear elastic formulation described in the previous
section is computationally expensive, and does not take into consid-
eration the skeleton. In this section we introduce a set of techniques,
tailored for fast skeleton-driven animation, that approximate the
nonlinear dynamics.

Figure 2: The upper left image shows an input model instrumented with a skeleton
and local coordinate systems. The upper right image shows the model embedded in
(half of) a control lattice. The lower left image shows how the skeleton coincides with
edges and vertices of the control lattice. The lower right image shows the entire control
lattice, as well as the division of the object into regions for local linearization. Each
region is associated with one of the local coordinate systems in the upper left image.
Note the color blending where regions overlap.

4.1 Instrumentation

Prior to simulation, a model must be instrumented with a skeleton
and control lattice. Although recent work by Teichmann and Teller
addresses automated skeleton construction [1998], we currently let
the animator specify the skeleton in order to achieve the desired
level of control. We have implemented a simple system that allows
a skeleton to be constructed manually in just a few minutes. The
user creates a joint by clicking on the object with the mouse. If the
ray through the mouse point (from the camera projection center)
intersects the object at least twice, a joint is placed midway be-
tween the first two intersections. This positioning scheme produces
joints that are centrally located inside the object. Two joints can be
selected to define a bone, and with the selection of a root joint, a
transformation hierarchy can be created automatically.

We currently use a constructive procedure that allows the user
to build the control lattice interactively by adding cells incremen-
tally and repositioning the control vertices as needed. Several hours
are required for an experienced user to create a moderately complex
control lattice. The abundance of volumetric meshing schemes sug-
gests that automatic creation of the control lattice is possible, and
we hope to address this problem in the future. Figure 2 shows the
skeleton and control mesh for a kangaroo model.

4.2 Solving the System

Due to the computational expense of solving the full nonlinear
equations of elasticity, we seek simplifications that make the equa-
tions easier to solve. One possibility is to linearize the equations
of motion at the beginning of each timestep as was done by Baraff

589

and Witkin in their work on cloth simulation [1998]. In our experi-
ence, simulations using this method are essentially indistinguish-
able from results obtained using a nonlinear implicit method to
solve the system, as long as the timestep is not so large as to al-
low radical shape change during a single step. After applying their
implicit solver to our formulation, the resulting equations are:

∆q = h(q̇ + ∆v) (15)

(M− hµI + h2S)∆v = h

(

µq̇−
∂V
∂q

−Qext − hSq̇
)

(16)

where h is the timestep, µ is the damping coefficient, I is the identity
matrix, ∆v is the change in the velocity q̇ during the timestep, ∆q
is the change in q during the timestep, M is the mass matrix, and S
is the stiffness matrix. All quantities are evaluated at the beginning
of the timestep. Equation (16) is a sparse linear system that can be
solved for ∆v using a Conjugate Gradients (CG) solver. Then ∆v
is substituted into equation (15) to obtain ∆q.

4.3 Bone Constraints

In our framework the skeleton is controlled directly by keyframe
data or some other source external to the dynamic simulation. From
the viewpoint of the simulation, the skeleton is simply a compli-
cated constraint. Because we have restricted the bones to lie along
edges in the control lattice, and the basis is interpolating, it is es-
pecially easy to handle the bone constraints algebraically. Each
control point that lies on a bone corresponds to a component of ∆v
that is known a priori, rather than having to be computed. Simpli-
fying equation (16) to the form A∆v = b, we can sort the variables
into known (∆vk and bk) and unknown quantities (∆vu and bu) and
form the following system:

(

A11 A12

A21 A22

) (

∆vk

∆vu

)

=

(

bu

bk

)

(17)

The reason that some components of the vector b are now unknown
arises from the fact that the external forces required to enforce the
bone constraints are unknown, and they appear on the r.h.s. of equa-
tion (16). In order to solve for ∆vu we simply solve the system:

A22∆vu = bk − A21∆vk (18)

The advantage of this approach is that adding skeletal constraints
actually reduces the computational cost by shrinking the system that
must be solved.

4.4 Linear Subspace Constraints

Because we would like our objects to interact with other objects,
position constraints are also important. The framework of Baraff
and Witkin [1998] provides an elegant solution for particle systems.
During each internal step of a CG solver, they project out certain
components of ∆v corresponding to constrained particles. Here
we show that this technique can be extended to include position
constraints at any point in a continuous body. Position constraints
in our framework are of the form:

dc(t) = qaφ
a(xc) (19)

which simply says that the displacement at xc conforms to some
known function dc. Evaluating equation (15) at xc results in:

∆vaφ
a(xc) =

dc(t + h)− dc(t)
h

− q̇aφ
a(xc) (20)

The r.h.s. of the above equation is simply a constant ac that can be
computed at the beginning of each timestep. If we accumulate the

x, y, and z components of the 3-vectors ac into the n-vectors aα,
where α ∈ {x, y, z}, define the matrix Cac = φa(xc), and separate
∆v into its x, y, and z components ∆vα, equation (20) becomes:

CT
∆vα = aα, α ∈ {x, y, z} (21)

So each constraint requires that ∆v be constant along three par-
ticular directions in R

3n. Maintaining the constraints involves the
following steps:

1. At the beginning of each timestep, ∆v is initialized so that
equation (21) holds. This is accomplished by computing the
QR-decomposition of C and transforming equation (21) into
RT bα = aα, ∆vα = Qbα, from which ∆v can be easily com-
puted. Although QR-decomposition of an n × m matrix re-
quires O(nm2) time, in our case the number of constraints m
is typically small, so the computational cost is low.

2. Each column c of C has an associated projection matrix P =
I − ccT/cT c, which, when applied to a vector, eliminates the
component in the direction of c. These projectors are applied
during CG such that incremental updates to ∆v are orthogonal
to the vectors c, ensuring that equation (21) remains true (for
details see [Baraff and Witkin 1998]).

In our current framework, conflicting constraints can be detected
during QR-decomposition and removed. In the future we hope to
augment this method to solve over-constrained systems more ele-
gantly, as was done for FFD by Hsu et al. [1992].

4.5 Blended Local Linearization

A major bottleneck in our system is the computation of the stiff-
ness matrix at the beginning of each timestep (the elastic potential
is a quartic function of q). A well-known simplification is to lin-
earize the strain tensor by dropping the last term in equation (10),
which results in a quadratic elastic potential and thus a constant
stiffness matrix (which is composed of the first three addends in
equation (28)). As compared to other simplifications such as us-
ing a mass-spring-based elastic potential, linearization of strain has
the advantage that it is a very good approximation, but only when
the deformation is small; for large deformations, severe distortions
occur.

A notable case for the linear strain model is when the object
undergoes a large rigid rotation, coupled with a small deformation.
While the elastic potential based on nonlinear strain does not penal-
ize rotations, the linear strain model does, while failing to penalize
certain shearing deformations. Terzopoulos et al. [1988] addressed
this case by modeling the deformation relative to a frame of refer-
ence that follows the gross motion of the object. Since the relative
deformation is assumed to be small, the linearized strain is a rea-
sonable approximation. This approach is common practice in the
engineering literature, such as in the textbook of Shabana [1998],
in which multibody systems composed of interconnected parts are
considered. In such systems, the deformation of each part can be
measured from a local reference configuration that factors in the ro-
tation of the part. As long as the deformation of each part is small
relative to its rotated reference configuration, the linear strain model
is a good approximation.

To apply these ideas to articulated characters, we first recognize
that the soft tissues of vertebrates do not typically undergo large
deformations relative to nearby bones. Based on this assertion, our
approach is to divide the object into regions, each of which can be
simulated using the linear strain model.

The user divides the object into regions by assigning weights to
the control vertices, forming a partition of unity over the object.
A piece of the object can belong to a single region or can be di-
vided fractionally among several regions. We encode the weights

590

for region i in a diagonal square matrix W i, where W i
aa is the weight

associated with vertex a in region i. The lower right image in Fig-
ure 2 shows a partitioned object, colored according to the region
assignments. Our current system requires that the user select indi-
vidual weights for each control vertex, but a more intuitive painting
interface would be straightforward to implement. It would also be
helpful to automate the task of region assignment (recent work by
Li et al. [2001] may be adaptable to our problem domain).

From the region assignments we form a cell complex K i corre-
sponding to region i:

K i = {C ∈ K : ∀ va ∈ v(C), W i
aa > 0} (22)

where v(C) is the set of control vertices on cell C. Each region has
an associated function space:

Bi = {φa|Ki : φa ∈ B, φa|Ki 6= 0} (23)

where φa|Ki denotes the restriction of φa to K i. We define a rect-
angular matrix Qi to select the basis functions that have nonzero
restrictions to region i. The element Qi

ab = 1 if and only if φa ∈ B
corresponds to φb ∈ Bi. The pseudocode for taking a single simu-
lation step is:

foreach region i do
1 [ri, qi, q̇i] ⇐ [Qir, Qiq, Qiq̇]

foreach a do
2 qi

a := qi
a − Ti(ri

a) + ri
a

end
3 Construct Ai and bi from equation (18)
4 Solve Ai

∆vi = bi

end
5 ∆v ⇐

∑

i WiQiT
∆vi

6 q̇ ⇐ q̇ + ∆v
7 q ⇐ q + hq̇

Line 1 extracts the regional variables from the global system.
Line 2 converts qi so that it corresponds not to displacement from
the rest state, but to displacement from the rest state transformed
according to the transformation of the bone coordinate system. The
homogeneous transformation Ti, extracted from the current config-
uration of the skeleton, represents the transformation of the bone
from its rest position to its current position. But it is not enough to
simply transform qi, because the transformation itself must be sub-
tracted from qi. A displacement field dT that transforms the object
x according to the transformation T(x), has the following form:

dT + x = T(x) (24)

It is from the above expression that line 2 is derived. Line 3 builds
the linear system required to solve for the local equations of mo-
tion, including the extraction of bone constraints, and line 4 solves
the linear system using CG. Line 5 merges the solutions from each
region, each weighted according to the user-assigned weights in Wi.
Finally, the state of the global system is updated in lines 6 and 7.

4.6 Twist Constraint

In natural creatures with three-dimensional bones, the flesh cannot
twist (i.e. rotate) around the axis of the bone without causing the
flesh to deform. Such deformations are resisted by emergent elas-
tic forces, so the twisting is limited. But flesh can rotate about a
line constraint without deforming. To avoid such unnaturally free
movement, we introduce a soft constraint to penalize all displace-
ment (not just deformation) within a fixed radius of the bones. We

Figure 3: The left image shows the kangaroo at rest. Brown spheres represent active
basis functions. The cyan sphere represents a position constraint. On the right, the
position constraint has been moved causing adaptation of the basis. The red spheres in
the right image represent newly introduced detail coefficients.

denote this region Ωβ ⊂ Ω. The following potential describes the
constraint:

U =
1
2

∫

Ωβ

d · ddΩ (25)

The above potential is quadratic, so its Hessian is simply a constant
that can be added to the stiffness matrix:

∂2U
∂qa∂qb

= I
∫

Ωβ

φaφb (26)

where I is a 3 × 3 identity matrix. The above constraint must be
computed relative to the rigidly transformed bone, which fits well
into our local computation framework.

4.7 Adaptation

Because we use a hierarchical basis, our simulator can add detail
where needed. We apply the simple heuristic that detail is more
helpful where there are large deformations (similar to, e.g., [De-
bunne et al. 2001]). If the object is sufficiently deformed over the
support of a particular basis function, then all of the basis functions
in the next finer level with support overlapping the area of high dis-
tortion are introduced into the simulation. Likewise, basis functions
are removed when there is little deformation in their support. Each
level of the basis has an associated threshold for determining when
to refine and another for determining when to coarsen. As noted
in [Debunne et al. 2001], a lower threshold is required for coarsen-
ing than refining in order to prevent the simulation from oscillating
between levels of resolution.

Regardless of the criteria employed, adapting the basis is
straightforward in our framework. Most of this simplicity comes
from refining the basis, not the geometry, as was done by Gortler
and Cohen [1995] and recently generalized by Grinspun et al.
[2002]. For some fixed number of basis levels we precompute the
mass and stiffness matrices and store them in a sparse data struc-
ture. Adapting the basis simply corresponds to extracting and re-
linquishing certain components from these matrices, which can be
done very quickly. The resultant subsets of the basis are linearly
independent regardless of which basis functions we choose. Fig-
ure 3 shows adaptation of the kangaroo model. For more details
regarding our adaptation methodology see [Capell et al. 2002].

5 Results

The accompanying video shows the results of applying our frame-
work to two triangle meshes that we acquired from the Internet.

591

Figure 4: Frames from an interactive animation. There is no noticeable warping due to
strain linearization, and the different materials (e.g., ears, horns) behave distinctly.

Figure 5: On the left is the global linear solution, which shows significant warping
when the cow turns its head to one side. In the center is the fully nonlinear solution.
On the right is the blended local linear solution, which shows no noticeable warping of
the head. A slight protrusion can be seen in the neck of the right image due to region
blending.

The control mesh for the kangaroo model has 448 cells and 177
vertices; the cow control mesh has 572 cells and 214 vertices. On
a 1 Ghz PC, both the cow and kangaroo animated at about 100 Hz
using only the coarse basis functions, which is clearly within range
for interactive applications (with adaptation, simulation time varies
depending on the degree of adaptation required). Figure 4 shows
frames of an animation of the cow model (using the coarse basis),
which demonstrates the ability of our system to handle variable ma-
terial properties; the ears flop around realistically while the horns
stay rigid. This feature is possible to do interactively because the
control mesh can be carefully crafted to respect material bound-
aries, and because our computation of the stiffness matrix takes
variable material properties into account.

For our datasets, the blended local linear and global linear so-
lutions required about the same amount of computation time. Yet
the blended local linear solution produced much more pleasing re-
sults, as demonstrated in Figure 5. The blended local linear solution
looks similar to the fully nonlinear solution, while the global linear
solution is badly warped.

6 Conclusion

We have introduced a method for interactive simulation of de-
formable bodies controlled by an underlying skeleton. By choosing
a volumetric mesh that aligns with the bones, we are able to meet
the bone constraints rapidly. We extend a fast constraint solver that
works directly within an iterative solver. We also introduce a twist
constraint that mimics the effects of three-dimensional bones when
only one-dimensional bones are being modeled. Our method per-
forms with the speed of simple linear-strain models of elasticity, but
does not suffer from distortions arising from global linearity.

There are many avenues for future work. We would like to au-
tomatically generate skeletons and especially control lattices, the
latter being the most labor intensive aspect of our framework. Our
assumptions about small deformations break down near the joints.

It may be possible to address this problem by using nonlinear elas-
ticity near the joints. The deformations near joints might also be
improved by specifically tailoring adaptation to the problem. Fi-
nally, it would be convenient to include dynamic, not just fully con-
strained, bones.

Acknowledgments The authors would like thank Chris Twigg,
Mira Dontcheva and Samantha Michel for their instrumental work
in creating and converting Maya skeletal animations, and Shawn
Bonham and Sean Smith for additional help. This work was sup-
ported by the Animation Research Labs, Microsoft Research, NSF
grants DMS-9803226 and CCR-0092970, and an Intel equipment
donation.

A Appendix

A.1 Review of Trilinear Functions

A trilinear function on the standard unit cube C3 = {x = (x, y, z) :
0 ≤ x, y, z ≤ 1} is a function of the form

f (x, y, z) = a0 + a1x + a2y + a3z + a4xy + a5xz + a6yz + a7xyz.

The function f is determined by its values at the vertices of C3: let
φ̂(s) denote the hat function

φ̂(s) =

{

1− |s| for |s| ≤ 1
0 for |s| > 1.

.

and let φ0(x, y, z) = φ̂(x)φ̂(y)φ̂(z). Then

f (x) =
∑

0≤i,j,k≤1

fi,j,kφ0(x− i, y− j, z− k)

where fi,j,k = f (i, j, k). It is easy to check that trilinear functions
satisfy the following interpolation or hexahedral subdivision rules:

(i) The value of f at the midpoint of an edge of C3 is the average
of its values at the endpoints of the edge.

(ii) The value of f at the centroid of a face of C3 is the average of
its values at the corners of the face.

(iii) The value of f at the centroid of C3 is the average of its values
at the eight vertices of C3.

If we subdivide the unit cube into 8 sub-cubes in the standard
way, we can use these subdivision rules to determine the value of f
at the vertices of each sub-cube. Repeatedly subdividing and apply-
ing the subdivision rules yields the value of f at each diadic point
(i/2J , j/2J , k/2J) of C3. Because the diadic points are dense in C3,
the subdivision rules completely determine f from its values at the
vertices of C3. More generally, starting with values of a function
at the vertices of the standard cubic tiling of R

3 and applying the
subdivision rules to each cubic cell determines a piecewise trilinear
function on R

3.
We can generalize this construction to define piecewise trilinear

functions on any control lattice in which the vertices of each 3-cell
of K have valence 3. Starting with the values of f at the vertices of
K, we infer its values at the centroid of every edge, face and 3-cell
of K. This gives values of f at every vertex of the refined complex
K1 obtained by subdivision (see [MacCracken and Joy 1996] for
details). Because the vertices of each 3-cell of K have valence 3,
the subdivided complex K1 has only hexahedral cells, so after one
subdivision, the subdivision process behaves just as for cubes in R

3.
There is a corresponding nested sequence of function spaces

V0 ⊂ V1 ⊂ V2 ⊂ . . .

592

defined on K. To define VJ , subdivide J-times to obtain the complex
KJ and specify values at each vertex of KJ . The subdivision rules
then determine a function on all of K. Thus, each function in VJ ,
for J = 0, 1, 2 . . . , is determined by its values at the vertices of K.

A.2 Derivatives of Elastic Potential

The gradient and Hessian of V from equation (12) are:

∂V
∂qc

=

2Aca
1 qa + Aac

2 qa + Bacqa

+2qd

(

qa · Cadc
1

)

+ (qa · qb) Ccab
1

+qa

(

qd · Cacd
2

)

+ qa

(

qd · Ccad
2

)

+ (qa · qb) Cbac
2

+qd (qa · qb) Dabcd
1 + qa (qd · qe) Dadce

2

(27)

∂2V
∂qc∂qf

=

2Acf
1 + Afc

2 + IBfc + 2I
(

qa · Cafc
1

)

+2qd ⊗ Cfdc
1 + 2Ccfb

1 ⊗ qb + I
(

qd · Cfcd
2

)

+qa ⊗ Cacf
2 + I

(

qd · Ccfd
2

)

+ qa ⊗ Ccaf
2

+Cfac
2 ⊗ qa + Cbfc

2 ⊗ qb + I (qa · qb) Dabcf
1

+2 (qd ⊗ qa) Dafcd
1 + I (qd · qe) Dfdce

2

+ (qa ⊗ qd) Dadcf
2 + (qa ⊗ qe) Dafce

2

(28)

where I is a 3× 3 identity matrix and

Aab
1 =

∫

Ω

4Gν
1−2ν

(

∂φa

∂x ⊗ ∂φb

∂x

)

dΩ

Aab
2 =

∫

Ω
4G

(

∂φa

∂x ⊗ ∂φb

∂x

)

dΩ

Bab =
∫

Ω
4G

(

∂φa

∂x · ∂φb

∂x

)

dΩ

Cabc
1 =

∫

Ω

4Gν
1−2ν

∂φa

∂x

(

∂φb

∂x · ∂φc

∂x

)

dΩ

Cabc
2 =

∫

Ω
4G ∂φa

∂x

(

∂φb

∂x · ∂φc

∂x

)

dΩ

Dabcd
1 =

∫

Ω

4Gν
1−2ν

(

∂φa

∂x · ∂φb

∂x

) (

∂φc

∂x · ∂φd

∂x

)

dΩ

Dabcd
2 =

∫

Ω
4G

(

∂φa

∂x · ∂φb

∂x

) (

∂φc

∂x · ∂φd

∂x

)

dΩ

(29)

Note that Aab
i is a 3× 3 matrix, Cabc

i is a 3-vector, and Bab and Dabcd
i

are scalar quantities.

References
AUBEL, A., AND THALMANN, D. 2000. Realistic deformation of human body shapes.

In Proceedings of Computer Animation and Simulation 2000, 125–135.

BANK, R. E. 1996. Hierarchical bases and the finite element method, vol. 5 of Acta
Numerica. Cambridge University Press, Cambridge, 1–43.

BARAFF, D., AND WITKIN, A. 1992. Dynamic simulation of non-penetrating flexible
bodies. Computer Graphics (Proceedings of SIGGRAPH 92) 26, 2, 303–308.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simulation. In Proceedings
of SIGGRAPH 98, 43–54.

BRO-NIELSEN, M., AND COTIN, S. 1996. Real-time volumetric deformable models
for surgery simulation using finite elements and condensation. Computer Graphics
Forum (Proceedings of Eurographics ’96) 15, 3, 57–66.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIĆ, Z. 2002. A
multiresolution framework for dynamic deformations. University of Washington,
Department of Computer Science and Engineering, Technical Report 02-04-02.

CIRAK, F., AND ORTIZ, M. 2001. Fully c1-conforming subdivision elements for finite
deformation thin-shell analysis. International Journal for Numerical Methods in
Engineering 51, 7 (July), 813–833.

DEBUNNE, G., DESBRUN, M., BARR, A., AND CANI, M.-P. 1999. Interactive
multiresolution animation of deformable models. Eurographics Workshop on Ani-
mation and Simulation.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H. 2001. Dynamic
real-time deformations using space & time adaptive sampling. In Proceedings of
SIGGRAPH 2001, 31–36.

DESBRUN, M., SCHRÖDER, P., AND BARR, A. 1999. Interactive animation of struc-
tured deformable objects. Graphics Interface ’99 (June), 1–8.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 1997. Dynamic free-
form deformations for animation synthesis. IEEE Transactions on Visualization
and Computer Graphics 3, 3 (July–Sept.), 201–214.

GORTLER, S. J., AND COHEN, M. F. 1995. Hierarchical and variational geometric
modeling with wavelets. Symposium on Interactive 3D Graphics, 35–42.

GOURRET, J.-P., THALMANN, N. M., AND THALMANN, D. 1989. Simulation of
object and human skin deformations in a grasping task. Computer Graphics (Pro-
ceedings of SIGGRAPH 89) 23, 3 (July), 21–30.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. Charms: A simple framework
for adaptive simulation. To appear in the Proceedings of SIGGRAPH 2002.

HSU, W. M., HUGHES, J. F., AND KAUFMAN, H. 1992. Direct manipulation of
free-form deformations. Computer Graphics (Proceedings of SIGGRAPH 92) 26,
2 (July), 177–184.

JAMES, D. L., AND PAI, D. K. 1999. Artdefo - accurate real time deformable objects.
Proceedings of SIGGRAPH 99 (August), 65–72.

KOCH, R. M., GROSS, M. H., CARLS, F. R., VON BÜREN, D. F., FANKHAUSER,
G., AND PARISH, Y. 1996. Simulating facial surgery using finite element methods.
Proceedings of SIGGRAPH 96 (August), 421–428.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space deformation: A
unified approach to shape interpolation and skeleton-driven deformation. In Pro-
ceedings of SIGGRAPH 2000, 165–172.

LI, X., WOON, T. W., TAN, T. S., AND HUANG, Z. 2001. Decomposing polygon
meshes for interactive applications. In ACM Symposium on Interactive 3D Graph-
ics, 35–42.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-form deformations with lattices of
arbitrary topology. Computer Graphics (Proceedings of SIGGRAPH 96) 30, 181–
188.

METAXAS, D., AND TERZOPOULOS, D. 1992. Dynamic deformation of solid prim-
itives with constraints. Computer Graphics (Proceedings of SIGGRAPH 92) 26, 2
(July), 309–312.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations: Modal dynamics for
graphics and animation. Computer Graphics (Proceedings of SIGGRAPH 89) 23,
3 (July), 215–222.

PICINBONO, G., DELINGETTE, H., AND AYACHE, N. 2000. Real-time large dis-
placement elasticity for surgery simulation: Non-linear tensor-mass model. In Pro-
ceedings of the Third International Conference on Medical Robotics, Imaging and
Computer Assisted Surgery: MICCAI 2000, 643–652.

PLATT, J. C., AND BARR, A. H. 1988. Constraint methods for flexible models.
Computer Graphics (Proceedings of SIGGRAPH 88) 22, 4 (August), 279–288.

PRENTER, P. M. 1975. Splines and Variational Methods. John Wiley and Sons.

ROTH, S. H. M., GROSS, M. H., TURELLO, S., AND CARLS, F. R. 1998. A
bernstein-bézier based approach to soft tissue simulation. Computer Graphics Fo-
rum 17, 3, 285–294.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deformation of solid geo-
metric models. Computer Graphics (Proceedings of SIGGRAPH 86) 20, 4 (Aug.),
151–160.

SHABANA, A. 1998. Dynamics of Multibody Systems. Cambridge University Press.

SINGH, K., AND KOKKEVIS, E. 2000. Skinning characters using Surface-Oriented
Free-Form deformations. In Proceedings of the Graphics Interface 2000, 35–42.

SLOAN, P.-P. J., ROSE, C. F., AND COHEN, M. F. 2001. Shape by example. In
Symposium on Interactive 3D Graphics, 135–144.

STOLLNITZ, E. J., DEROSE, T. D., AND SALESIN, D. H. 1996. Wavelets for Com-
puter Graphics: Theory and Applications. Morgan Kaufmann, San Francisco, CA.

TEICHMANN, M., AND TELLER, S. 1998. Assisted articulation of closed polygonal
models. In Computer Animation and Simulation ’98, 87–101.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Modeling inelastic deformation: Vis-
coelasticity, plasticity, fracture. Computer Graphics (Proceedings of SIGGRAPH
88) 22, 4 (August), 269–278.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically based models with rigid and
deformable components. IEEE Computer Graphics and Applications 8, 6 (Nov.),
41–51.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987. Elastically
deformable models. Computer Graphics (Proceedings of SIGGRAPH 87) 21, 4
(July), 205–214.

WILHELMS, J., AND GELDER, A. V. 1997. Anatomically based modeling. In Pro-
ceedings of SIGGRAPH 97, 173–180.

WITKIN, A., AND WELCH, W. 1990. Fast animation and control of nonrigid struc-
tures. Computer Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August), 243–
252.

593

